CARINGBAH HIGH SCHOOL

YEAR 12 (2011) ASSESSMENT TASK # 1 (DEC 2010) 2 UNIT MATHEMATICS

- * Time allowed 1 hour
- * Start each question on a new page
- * Do not use liquid paper
- * Show all necessary working
- * Approved calculators permitted

Question 1 (10 marks)

Marks

- (a) Using the discriminant determine the number of roots of the quadratic equation $x^2 - 2x - 5 = 0$ (you do not have to find the roots)

(b) What is the equation of the axis of symmetry of $y = x^2 - 6x$

(1)

(1)

- (c) Find the derivative of the following
 - (i) $y = \frac{3}{x^2}$
 - (ii) $y = \sqrt{2x 5}$
 - (iii) $y = \frac{(x-1)}{(2x-3)}$
 - (iv) $f(x) = ax^2 + bx + c$ (6)
- (d) Find the second derivative of $f(x) = (\frac{1}{2}x 4)^4$ (2)

Question 2 (10 marks)

Marks

(2)

- (a) If $x^2 2Kx + 1 = 0$ has real roots find the value(s) of K
- (b) Solve for x the inequality $x^2 7x + 12 \le 0$ (2)
- (c) Find the values of A, B, C if $x^2 + x 2 \equiv A(x-2)^2 + Bx + C$ (2)
- (d) If $f(x) = x^2 + 5x + 3$ find any value of x for which f'(x) = 39(2)
- (e) A person has a fever and his temperature is increasing at a decreasing rate. Draw a graph of this with temperature (T) on the vertical axis and time (t) on the horizontal axis. (2)

Question 3 (10 marks)	Marks
(a) Write the first 3 terms of $T_n = (-1)^n \times \frac{1}{n}$	(1)
(b) Find the common difference in the arithmetic series	(1)
$\sqrt{3} + \sqrt{12} + \sqrt{27}$	(3)
(d) If α, β are the roots of $2x^2 + x - 8$ find the value of	
(i) $\alpha + \beta$	
(ii) $\alpha\beta$	
(iii) $\alpha^2 + \beta^2$	(4)
(e) For the arithmetic series $\{4+7+10+\dots\}$	
Find the general term T_n in its simplest form	(1)
Question 4 (10 marks)	Marks
(a) For what value of n will one root of the equation	
$(n-2)x^2 + (n+2)x + 2n + 1 = 0$	
be the reciprocal of the other.	(2)
(b) In an arithmetic series $T_{10}=5$ and $T_{17}=54$ Find	
(i) the first term	(1)
(ii) common difference	(1)
(c) Find the seventh term of the geometric series 54 -18+ 6	(2)

Question 4 cont'd	Marks
(d) An author writes a manuscript so that on the first day he writes 54 pages, on the second day 36 pages and so on each succeeding day he writes $\frac{2}{3}$ rds of the number of pages of the preceding day.	
(i) How many pages does he write on the fifth day	(1)
(ii) How many pages has he written in 5 days	(1)
(iii) What is the maximum number of pages he will write	(2)
Question 5 (10 marks)	Marks
Question 5 (10 marks) (a) For the curve with equation $y = 2 + 9x - 3x^2 - x^3$	Marks
	Marks
(a) For the curve with equation $y = 2 + 9x - 3x^2 - x^3$	
(a) For the curve with equation $y = 2 + 9x - 3x^2 - x^3$ (i) Find any stationary points	(2)
(a) For the curve with equation $y = 2 + 9x - 3x^2 - x^3$ (i) Find any stationary points (ii) Determine the nature of the stationary points	(2) (2)

END OF EXAM

Caringbah H/S Mathematics 2 unit Ass Task "I H-S.C. (Dec 2010)

Question 1

- $(9) b^{2} 4ac = \Delta$ $= (2)^{2} 4(1)(5)$ = 24
 - 2 roots
- Un 3 = x
- (c) (i) $y' = -\frac{b}{x^3}$
 - (ii) $y' = \frac{1}{\sqrt{22-5}}$
- (iii) $y' = \frac{1}{(2x-3)^2}$
- (iv) f(a) = 2ax+6
- $(d) f''(x) = 3(1/2x 4)^2$

Question 2.

 $(a, \chi^2 - 2K\chi + 1 = 0)$ $(a, \chi^2 - 2K\chi + 1 = 0)$

 $(-2k)^2 - 4(1)(1) > 0$

(K-1)(K+1) > 0

:. K 5-1 U K 71

- (b) x²-7x+12 ≤0
 - $(x-3)(x-4) \le 0$ $3 \le x \le 4$
- (c) $\chi^2 + \chi 2 = A(\chi^2 i \chi + \chi) + Batc$
- $x^2 + x x = Ax^2 + x(B 4A) + 4A + C$ A = 1, B - 4A = 1, 4A + C = -2
- B=5 C=-6
- (d) $f(x) = x^2 + 5x + 3$ f'(x) = 2x + 5
 - 2x+5=39 2z=34
 - x = 17

Question 2

T t

Question 3.

 $T_2 = \frac{1}{2}$ $T_3 = -\frac{1}{2}$

de, 53

(C) $3x^2 - 8x + K = 0$ Let roots be

x, 3x

 $x' = \frac{8}{3}$ $x = \frac{2}{3}$

 $3(\frac{2}{3})^{2} = \frac{k}{3}$

.. K=4

(d, 222+2-8=0)

(1) x+B=-1/2

(ii) ×B = -4

 $= (\alpha + \beta)^{2} - 2\alpha\beta$ $= (\alpha + \beta)^{2} - 2\alpha\beta$

= 814

(e) Tn = 4+ (n-1) 3.

Tn = 3n+1

Question 4

a Suie ap=1

 $\frac{2n+1}{n-2} = 1$ $\frac{2n+1}{n-2} = n-2$ $\frac{2n+1}{n-2} = -3$

(b) 5 = a+9d -0

54 = a + 16d - 2

2 - 0 49 = 7d d = 7 a = -58

 $C_1 T_n = a_1^{n-1}$ $T_7 = 54(-\frac{1}{3})^6$ $T_7 = \frac{2}{27}$

(d) 54, 36, 24, ---

 $(i) T_5 = 54(\frac{2}{3})^4$ = $10^2/3$

 $(ii) S_5 = 54 \left[1 - (\frac{2}{3})^5\right]$

S= 1402/3

(iii) $S_{ab} = \frac{a}{1-c}$ = 54 = 162

curinguan TIS June 185 Task #1 Dec (2010) H.S.C.

(iv)

Question 5

$$91 y = 2 + 92 - 32^2 - 2^3$$

$$y' = 9 - 6x - 3x^2$$

$$9 - 6x - 3x^{2} = 0$$

$$2^{2} + 2x - 3 = 0$$

$$(2+3)(2-1)=0$$

$$\begin{bmatrix} 32 = -3 \\ 4 = -25 \end{bmatrix} \begin{bmatrix} 32 = 1 \\ 4 = 7 \end{bmatrix}$$

when
$$x=3$$
, when $x=1$

$$\begin{bmatrix} -1, -9 \end{bmatrix}$$

